

Overview

- Quantitative and Qualitative
- Data gathered and typical initial processing
- Preparing data for statistical analysis
- Descriptive statistics
- Comparing means
 - > t-test
 - Analysis of variance (ANOVA)

<list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Describing HCI Students?

Height, weight, age, etc.

Quantitative analysis:

- 165cm tall on average.
- 70Kg weighs on average.
- 21 years old on average.
- Qualitative analysis: focuses on the nature of something.
 - Average student is tall, thin and young.

	Usual raw data	Example qualitative data	Example quantitative data	Initial processing steps
Interviews	Audio recordings. Interviewer notes. Video recordings	Responses to open questions. Video pictures. Respondent's opinions	Age, job role, years of experience. Responses to closed questions	Transcription of recordings. Expansion of notes
Questionnaires	Written responses. Online database	Responses to open questions. Responses in 'further comments' fields. Respondent's opinions	Age, job role, years of experience. Responses to closed questions	Clean up data. Filter into different data sets
Observation	Observer's notes. Photographs. Audio and video recordings. Data logs. Think-aloud	Records of behavior. Description of a task as it is undertaken. Copies of informal procedures	Demographics of participants. Time spent on a task. The number of people involved in an activity	Expansion of notes. Transcription of recordings. Synchronization between data recordings

Preparing Data for Analysis

- Cleaning up data:
 - Detect errors
 - Formatting
- Coding:
 - Types of data that need to be coded
 - Be consistent
- Organizing the data:
 - Accommodate to the requirements of statistical software

Simple Quantitative Analysis

- Measures of central tendency:
 - Mean: add up values and divide by number of data points.
 - Median: middle value of data when ranked.
 - Mode: figure that appears most often in the data.
- Percentages

✤Measures of spread:

- Range
- Variance (mean of squared distance from mean)
- Standard deviations (square root of variance)

Graphical Representations

✤ Give overview of data.

Simple Qualitative Analysis Recurring patterns or themes Emergent (تنشئ) from data, dependent on observation framework if used. Categorizing data Categorizing data Categorization scheme may be emergent or pre-specified. Looking for critical incidents Helps to focus in on key events.

Comparing Means

- In multiple conditions studies, the goal is to find out whether there is any difference between the conditions.
- The significance test will suggest the probability of the observed difference occurring by chance.
- If the probability fairly low (<5%), we can claim with high confidence that difference is due to difference in independent variables.

Comparing Means

t-test a simplified analysis of variance involving only 2 conditions.

ANOVA: more than two conditions.

Independent variables (IV)	Conditions for each IV	Types of test
1	2	Independent-samples t test
1	3 or more	One-way ANOVA
2 or more	2 or more	Factorial ANOVA
1	2	Paired-samples t test
1	3 or more	Repeated measures ANOVA
2 or more	2 or more	Repeated measures ANOVA
2 or more	2 or more	Split-plot ANOVA
	Independent variables (IV) 1 1 2 or more 1 2 or more 2 or more 2 or more	Independent variables (IV)Conditions for each IV1213 or more2 or more2 or more1213 or more2 or more

Comparing Means: Example

- Suppose you want to investigate whether the use of specific word-prediction software has an impact on typing speed?
- Null hypothesis?

There is no significant difference in the task completion time between individuals who use the word-prediction software and those who do not use the word-prediction software.

Comparing 2 means: *t*-test

Independent-samples t-test: between-group design

Group	Participants	Task completion time	Coding
No prediction	Participant 1	245	0
No prediction	Participant 2	236	0
No prediction	Participant 3	321	0
No prediction	Participant 4	212	0
No prediction	Participant 5	267	0
No prediction	Participant 6	334	0
No prediction	Participant 7	287	0
No prediction	Participant 8	259	0
With prediction	Participant 9	246	1
With prediction	Participant 10	213	1
With prediction	Participant 11	265	1
With prediction	Participant 12	189	1
With prediction	Participant 13	201	1
With prediction	Participant 14	197	1
With prediction	Participant 15	289	1
With prediction	Participant 16	224	1

Independent-samples t-test

SPSS results summary:

- If we run an Independent-samples *t*-test a value called *t* value is returned.
- For previous example: *t* value is 2.169, which is higher than the t value for the specific degree of freedom (df=15) at the 95% confidence interval.
- This suggests that there is significant difference in the task completion time between the groups.

ired-sample <i>t</i> -test: within-group des					
Participants	No prediction	With prediction			
Participant 1	245	246			
Participant 2	236	213			
Participant 3	321	265			
Participant 4	212	189			
Participant 5	267	201			
Participant 6	334	197			
Participant 7	287	289			
Participant 8	259	224			

Two-tailed vs. one-tailed *t*-test

- In some studies the hypothesis indicates the direction of the difference.
- Hypothesis: users who use word-prediction software can type faster than those who do not.
- In these cases, one tailed t-test is more appropriate.
- A *t* value that is >90% confidence interval suggests that the null hypothesis is false, and the difference is significant.

- ANOVA tests returns a value called F
- Also called F-test
- One-way ANOVA: for between-group design and only one independent variable with 3 or more conditions.

Group	Participants	Task completion time	Coding
Standard	Participant 1	245	0
Standard	Participant 2	236	0
Standard	Participant 3	321	0
Standard	Participant 7	287	0
Standard	Participant 8	259	0
Prediction	Participant 9	246	1
Prediction	Participant 10	213	1
Prediction	Participant 15	289	1
Prediction	Participant 16	224	1
Speech-based dictation	Participant 17	178	2
Speech-based dictation	Participant 18	289	2
Speech-based dictation	Participant 23	267	2
Speech-based dictation	Participant 24	197	2

One-way ANOVA

♦ SPSS results summary:

Source	Sum of squares	df	Mean square	F	Significance
Between-group	7842.250	2	3921.125	2.174	0.139
Within-group	37880.375	21	1803.827		

Result of the one-way ANOVA test.

★ The calculated value 2.174 is lower than the value at the 95% confidence → no significant difference among the 3 conditions.

Factorial ANOVA

- For between-group design
- 2 or more independent variables involved
- Data layout: table 4.9

	Standard	Prediction	Speech
Transcription	Group 1	Group 2	Group 3
Composition	Group 4	Group 5	Group (

Task type	Entry method	Participant number	Task time	Task type coding	Entry meth coding
Transcription	Standard	Participant 1	245	0	0
Transcription	Standard	Participant 2	236	0	0
Transcription	Standard	Participant 3	321	0	0
					141414
Transcription	Prediction	Participant 9	246	0	1
Transcription	Prediction	Participant 10	213	0	1
Transcription	Prediction	Participant 11	265	0	1
Transcription	Speech-based dictation	Participant 17	178	0	2
Transcription	Speech-based dictation	Participant 18	289	0	2
Transcription	Speech-based dictation	Participant 19	222	0	2
Composition	Standard	Participant 25	256	1	0
Composition	Standard	Participant 26	269	1	0
Composition	Standard	Participant 27	333	1	0
Composition	Prediction	Participant 33	265	1	1
Composition	Prediction	Participant 34	232	1	1
Composition	Prediction	Participant 35	254	1	1

Composition	Speech-based dictation	Participant 41	189	1	2
Composition	Speech-based dictation	Participant 42	321	1	2
Composition	Speech-based dictation	Participant 43	202	1	2

Factorial ANOVA

SPSS summary results

Source	Sum of square	Df	Mean square	F	Significance
Task type	2745.188	1	2745.188	> 1.410	0.242
Entry method	17564.625	2	8782.313	7 4.512	0.017
Task*entry	114.875	2	57.437	0.030	0.971
Error	81751.625	42	1946.467		

Table 4.10 Result of the factorial ANOVA test.

→ no significant difference regarding task type.

➔ These is significant difference regarding used entry method.

Repeated measures ANOVA

For within-group design

Can investigate one or more variables

One-way repeated measures ANOVA

Participant 1	245	246	178
Participant 2	236	213	289
Participant 3	321	265	222
Participant 4	212	189	189
Participant 5	267	201	245
Participant 6	334	197	311
Participant 7	287	289	267
Participant 8	259	224	197

Repeated measures ANOVA One-way repeated measures ANOVA summary report: Source Sum of square Df Mean square F Significance 0.087 Entry method 7842.25 2 2.925 3921.125 14 18767.083 1340,506 Error Table 4.12 Result of the one way repeated measures ANOVA test.

➔ no significant difference between the three text entry methods.

Repeated measures ANOVA Two-way repeated measures ANOVA experiment design: Speech Standard Prediction Transcription Group 1 Group 1 Group 1 Composition Group 1 Group 1 Group 1 Experiment design of a two-way, repeated measures ANOVA.

Repeated measures ANOVA

Two-way repeated measures ANOVA data layout:

	Transcription				Composition	
	Standard	Prediction	Speech	Standard	Prediction	Speech
Participant 1	245	246	178	256	265	189
Participant 2	236	213	289	269	232	321
Participant 3	321	265	222	333	254	202
Participant 4	212	189	189	246	199	198
Participant 5	267	201	245	259	194	278
Participant 6	334	197	311	357	221	341
Participant 7	287	289	267	301	302	279
Participant 8	259	224	197	278	243	229

Table 4.14 Sample data for two-way, repeated measures ANOVA test.

Repeated measures ANOVA

Two-way repeated measures ANOVA summary report:

Source	Sum of square	df	Mean square	F	Significance
Task type	2745.187	1	2745.187	14.217	0.007
Error (task type)	1351.646	7	193.092		
Entry method	17564.625	2	8782.313	2.923	0.087
Error (entry method)	42067.708	14	3004.836		
Task type * entry method	114.875	2	57.438	0.759	0.486
Error (task type * entry method)	1058.792	14	75.628		

Table 4.15 Result of the two-way, repeated measures ANOVA test.

Split-plot ANOVA

- Involves both between-group and withingroup factors
- Experiment design:

	Keyboard	Prediction	Speech
Transcription	Group 1	Group 1	Group 1
Composition	Group 2	Group 2	Group 2
Table 4.1	6 Split-plot	experiment	design.

Task type	Participant number	Task type coding	Standard	Prediction	Speecl
Transcription	Participant 1	0	245	246	178
Transcription	Participant 2	0	236	213	289
Transcription	Participant 3	0	321	265	222
Transcription	Participant 4	0	212	189	189
Transcription	Participant 5	0	267	201	245
Transcription	Participant 6	0	334	197	311
Transcription	Participant 7	0	287	289	267
Transcription	Participant 8	0	259	224	197
Composition	Participant 9	1	256	265	189
Composition	Participant 10	1	269	232	321
Composition	Participant 11	1	333	254	202
Composition	Participant 12	1	246	199	198
Composition	Participant 13	1	259	194	278
Composition	Participant 14	1	357	221	341
Composition	Participant 15	1	301	302	279
Composition	Participant 16	1	278	243	229

Split-plot ANOVA Summary Report

Source	Sum of square	df	Mean square	F	Significance
Task type	2745.187	1	2745.187	0.995	0.335
Error	38625.125	14	2758,937		

Table 4.18 Results of the split-plot test for the between-group variable.

Source	Sum of square	df	Mean square	F	Significance
Entry method	17564.625	2	8782.313	5.702	0.008
Entry method * task type	114.875	2	57.437	0.037	0.963
Error (entry method)	43126.5	28	1540.232		

Table 4.19 Results of the split-plot test for the within-group variable.

Presenting the Findings

- Only make claims that your data can support.
- The best way to present your findings depends on the audience, the purpose, and the data gathering and analysis undertaken.
- Graphical representations may be appropriate for presentation.
- Other techniques are:
 - Notations, e.g. UML
 - Using stories, e.g. to create scenarios

